Abstract - Hydrogen is produced by reacting amorphous silicon with water, an alcohol or a carboxylic acid at room temp. The formed byproducts, e.g. SiO₂ and Si(OR)₄ with R being an alkyl or carboxylic acid group, can be recycled or used for other applications.

\[
\begin{align*}
\text{Si}_{\text{am,bl}} & \rightarrow \text{Si(OR)}_4 + 2\text{H}_2 \\
\text{H}_2\text{O} & \rightarrow \text{SiO}_2 + 2\text{H}_2 \\
\text{HAc} & \rightarrow \text{Si(OAc)}_4 + 2\text{H}_2
\end{align*}
\]

Abstract - The invention relates to a method for producing amorphous Si and/or organohalosilanes. In a 1st embodiment of the method, a halosilane is reacted with a
metal in a non-polar solvent. In a 2nd embodiment, the black amorphous Si is reacted with an organohalogen to form an organohalosilane. In a 3rd embodiment, amorphous Si is produced by reducing SiCl₄ with a metal in an apolar solvent. In a 4th embodiment, amorphous Si is produced by reacting SiF₄ with a metal. The method can be carried out by using an especially small amount of materials and/or energy, and/or is characterized by an especially high versatility.

![Diagram of silicon production](image-url)

**WO 2003059814 A1 PRODUCTION OF SILICON**

**Abstract** - The invention relates to a method for producing Si, according to which SiO₂ or silicates are reacted thermally with HF or a fluoride of a metal of Group I or II of the periodic table, or with hexafluorosilicates to obtain SiF₄. The SiF₄ that is obtained is reduced to Si and a metal fluoride by means of a Group I or II metal. The method represents a closed production process, in which very few or no byproducts are generated and the co-reactants required for the reaction are obtained to a great extent from the educts of the method.
**WO 2002090257 A1**  
**PROCEDURE FOR THE ENERGY PRODUCTION BY USING NATURAL SILICON RESOURCES**

*Abstract* - Energy is produced in following steps (1) recovery of Si from SiO₂ and/or silicates especially fluorosilicates, and (2) treatment of the recovered Si with H₂O (especially seawater) to high-purity SiO₂ under release of energy and H₂. The recovery of Si from SiO₂ and/or silicates results by treatment of the SiO₂ and/or silicates with HF to SiF₄ which can be treated thermolytically, catalytically, or by reduction with metals or metal hydrides to Si.

![Chemical Diagram](image)

**WO 2002090254 A1**  
**PROCEDURE FOR THE PRODUCTION OF SILICON NITRIDE BY TREATMENT OF A SILICON–CONTAINING MIXTURE OR ALLOY WITH AIR**

*Abstract* - Si₃N₄ is produced in the following steps (1) manufacturing of a mixture or an alloy containing Si and a chemical element or compound reacting with O₂ faster or just as fast as Si, (2) heating up the mixture or alloy at an ignition point of the element or compound followed by charging with air, (3) oxidation of the element or compound with O₂ from air, and (4) combustion of Si with the residual N₂ from air at an increased temperature generating by the oxidation step 3.

![Chemical Diagram](image)

**WO 2002090255 A1**  
**PROCEDURE FOR THE ENERGY PRODUCTION BY MANUFACTURE OF ALUMINUM NITRIDE AND ITS REACTION WITH WATER TO ALUMINUM OXIDE AND AMMONIA**

*Abstract* - Energy is produced by manufacturing of AlN from Al and N₂ or by reaction of the manufacturing AlN with H₂O to Al₂O₃ and NH₃. The produced thermal energy is
transformed to kinetic energy for operating turbines. Al₂O₃ can be used for the manufacturing of Al or AlN by reaction with C and N₂ and NH₃ can be used for the manufacturing of fertilizers or as H₂ carrier which can be combusted in fuel cells.

WO 2001098205 A1 PRODUCTION OF AMMONIA BY CATALYTIC REACTION OF SILICON AND/OR SILICON COMPOUNDS WITH NITROGEN FOLLOWED BY TREATMENT OF THE RESULTING SILICON NITRIDE

Abstract - NH₃ is manufactured by reaction of Si, and/or Si compounds especially silanes with N₂ in the presence of a catalyst selected from subgroup elements or subgroup element oxides. The resulting Si₃N₄ can be further treated optionally with (1) a strong base or their aqueous solution, (2) CO₂ and H₂O followed by thermal decomposition or treatment with a strong base of the resulting (NH₄)₂CO₃, or with (3) HF to give NH₃.

Reaction 1

\[
\text{Si} + 2 \text{MeCl} \rightarrow \text{Me}_2\text{SiCl}_2 + \ldots
\]

\[\Delta H = -295 \text{ kJ/mol} \text{ Me}_2\text{SiCl}_2\]

onset temperature = 147 °C

Si/CuO \Rightarrow 103 °C

Reaction 2

\[
\text{Si} + 2 \text{CuO} \rightarrow \text{SiO}_2 + 2 \text{Cu}
\]

\[\Delta H = -300 \text{ kJ/mol} \text{ CuO}\]

onset temperature = 370 °C

Si/CuO \Rightarrow 190 °C

Reaction 3

\[
3 \text{Si} + 2 \text{N}_2 \rightarrow \text{Si}_3\text{N}_4
\]

\[\Delta H = -750 \text{ kJ/mol} \text{ Si}_3\text{N}_4\]

onset temperature = 1000 °C

Si/CuO \Rightarrow 740 °C
WO 9802393 A1  COMPOSITIONS FOR FIRE-RESISTANT FOAM AND INSULATION

Abstract - The compositions, containing a 20-70-wt.% aqueous Al(H₂PO₄)₃ solution 30-90, a mixture consisting of MgO 10-70, mica 0-70, Al(OH)₃ 0-70, and MnO₂ 1-20 wt.% 5-55, and a 3-33-wt.% aqueous H₂O₂ solution as foaming agent 1-30 wt. parts, additionally containing 1 inorganic fillers 1-60 and 1 organic processing agents 1-60 wt.%. A composition consisting of Al(H₂PO₄)₃ 29, water 29, MgO 16, mica 5, Al(OH)₃ 5 MnO₂ 5, filler 12, H₃BO₃ 1, grog 7, clay 4, H₂O₂ 0.72, and water 3.28 wt. parts.

EP 752396 A1  FOAMED INORGANIC MATERIAL AND THEIR MANUFACTURE

Abstract - The materials consist of a 20-70-wt.% aqueous Al(H₂PO₄)₃ solution 40-90, a mixture containing MgO 10-70, mica 10-70, Al(OH)₃ 10-70, and MnO₂ 2-20 wt.% 5-55, and foaming agent containing a 3-33-wt.% aqueous H₂O₂ solution 1-30 wt. parts. The materials are manufactured by dispersing the mixture under agitation in the Al(H₂PO₄)₃ solution and adding the foaming agent, casting the dispersion into a mold, allowing 0.5-10 min for foaming, and cooling the foamed material. A mixture consisting of MgO (purity >95%) 20, mica (particle size 60 mesh) 30, Al(OH)₃ (Al₂O₃ content 65%) 50, and MnO₂ (particle size <100 m) 10 was dispersed in a 50-wt.% aqueous Al(H₂PO₄)₃ solution 100 under agitation for 60 s, after which 18% aqueous H₂O₂ solution was added. The mixture foamed for 1 min to 400-500% of its original volume. The foamed material was stored on the air for 3 days to give cellular material having a density of 0.22 g/cm³, compressive strength 21 N/cm². The material showed a compression of 12% under a load of 11,000 N/cm².

DE 29803325.9  FUEL CELL WITH SOLID ELECTROLYTE AND PLANAR STRUCTURE

Abstract - The invention relates to a fuel cell (1), comprising at least two electrodes (4, 8) arranged in a housing (2, 3, 15), a solid electrolyte (6) positioned between said electrodes (4, 8), at least one hydrogen inlet connection (16, 17) at the level of at least one first electrode (4) and at least one oxygen supply point (20) at the level of at least one second electrode (8). To produce said fuel cell the housing is assembled from two outer housing plates (2, 3) the first (2) of which is fitted with the at least one hydrogen inlet connection (17) and the second (3) of which with the at least one oxygen supply point (20). The two electrodes (4, 8) and the solid electrolyte are arranged between the two outer housing
plates (2, 3) in the formed of plate-like elements. A gap between the housing plates (2, 3) can be filled with a cast plastic material which forms a frame which seals the inner space of the fuel cell in a gas-proof manner.

DE 29811922.6  FUEL CELL AND FUEL CELL ARRANGEMENT

Abstract - The invention is a variant of the fuel cell covered by DE 29803325.9.

DE 19916239.5  FUEL CELL WITH POLYMER ELECTROLYTE

Abstract - The Invention is the same as in DE 50001395.0.

DE 50001395.0  FUEL CELL WITH POLYMER ELECTROLYTE

Abstract - A fuel cell (1) is provided with a central polymer membrane (2) that is provided with diffusion layers (3, 4) covering both sides and having plane electrodes (5, 6) supporting the back surface of said layers. The electrodes (5, 6) are provided with openings (15, 16) and rear covers (7, 8) with gas supplies (9, 10) for at least one of the plane electrodes (5, 6). At least two parallel extending gas flow channels (11, 12; 13, 14) sealed against each other are configured between at least one plane electrode (5, 6) and the cover (7, 8) pertaining thereto. Openings (15) in the plane electrode (6) extend from one gas flow channel (13) into the adjacent diffusion layer (4) and from the diffusion layer (4) into the other gas flow channel (14). The fuel cell (1) is provided with a greater dimension lengthwise in the main extension direction of the gas flow channels (11, 13) than vertical thereto.

DE 19916240.9  HYDROLYZER

Abstract - A hydrolyzer has a central polymer membrane with a diffuser layer on both sides, supported on the back by perforated flat electrodes, water reservoir(s), supplying water through one of the diffuser layers to the
membrane, and a voltage supply for applying voltage between the electrodes to produce a potential difference. The novelty is that the water reservoir(s) is on the same side of the membrane as the electrode at the lower potential.

DE 19916243.3 DEVICE FOR CONVERTING ENERGY WITH AT LEAST ONE FUEL CELL AND/OR ONE HYDROLYSER

Abstract - An energy conversion equipment (1) comprises fuel cell electrodes (7) which can be short-circuited by a conductive rotor casing (16) of a unipolar machine (3). An Independent claim is also included for energy conversion apparatus in which the fuel cell (2) of the above equipment is replaced by a hydrolyzer.

DE 10013900.0 FUEL CELL WITH PERFORATED PLANAR ELECTRODE ADJACENT TO ION EXCHANGE LAYER, HAS FILLED PERFORATIONS WHERE ELECTRODE IS LED OUT THROUGH SEALANT MASS

Abstract - The planar electrode (17) is led out through the sealant mass (7). The sealant fills electrode perforations (18) in this region, completely embedding the electrode.
DE 10053609.3 PRESSURE DIFFERENCE SAFETY VALVE

Abstract - The safety valve assembly (7,27), to limit the difference pressure between two media (3,23), has a pressure chamber (9,19) for each medium. An escape opening (12) is at one pressure chamber (9) for the first medium (3), with a valve body (20) which keeps the escape opening closed during normal working. A sealing membrane (11), which can distort, separates the two pressure chambers and when there is a pressure difference its distortion trips the valve into its release setting for the medium to escape.

DE 10059410.7 FUEL CELL OPERATING METHOD HAS CONTACT SURFACE BETWEEN CATALYZER AND CARRIER FLUID FOR RELEASE OF OXYGEN AND HYDROGEN REGULATED DEPENDENCE ON REQUIRED FUEL CELL OUTPUT

Abstract - The operating method has a fuel cell (1) with a polymer electrolyte membrane supplied on opposite sides with hydrogen and oxygen as the reaction gases, the hydrogen and oxygen released from a carrier fluid (9) via a catalyzer (11). The area of the contact surface (13) between the catalyzer and the carrier fluid is regulated automatically in dependence on the required output of the fuel cell. An Independent claim for a fuel cell device for providing electrical energy by the cold oxidation of hydrogen with oxygen is also included.
DE 10131359.4

**PRODUCTION OF A FLAT ELECTRODE COATED WITH PLATINUM AND/OR PALLADIUM ON ONE SIDE USED E.G. FOR A FUEL CELL COMPRISSES PRODUCING A THIN LAYER OF PLATINUM AND/OR PALLADIUM, AND APPLYING ON THE BASE STRUCTURE OF THE FLAT ELECTRODE**

*Abstract* - Production of a flat electrode coated with platinum and/or palladium on one side comprises producing a thin layer (4) of platinum and/or palladium, and applying on the base structure (16) of the flat electrode. An Independent claim is also included for the flat electrode produced. Preferred Features: Gold can be added to the layer before the layer is applied on the base structure of the electrode. The platinum or palladium has a thickness of less than $1 \times 10^{-6}$ m. The layer is applied to the electrode using water to which gelatin is added. The base structure is made from titanium or graphite.

DE 10201149.4

**ELONGATED FUEL CELL WITH TRANSVERSE CHANNELS FOR GAS SUPPLY HAS SEVERAL OF THE TRANSVERSE CHANNELS WITH CROSS-SECTION DECREASING FROM ONE LONGITUDINAL EDGE OF FUEL CELL TO THE OTHER**

*Abstract* - The invention is the same as in EP 03000354.5.

DE 10163687.3

**FUEL CELL OR HYDROLYZER COMPRISSES A CENTRAL PROTON EXCHANGE MEMBRANE, A DIFFUSER LAYER ON ONE SIDE OF THE MEMBRANE, AND A FLAT ELECTRODE HAVING OPENINGS AND SUPPORTING THE DIFFUSER LAYER**

*Abstract* - Fuel cell or hydrolyzer comprises a central proton exchange membrane, a diffuser layer on one side of the membrane, and a flat electrode (6) having openings and supporting the diffuser layer. The flat electrode has a base structure (8) containing at least 90 wt.% nickel and having a precious metal coating (9).
The precious metal coating completely covers the base structure in the fuel cell or hydrolyzer and contains at least 99% platinum and/or palladium. Preferred Features: The base structure contains at least 96, preferably 99 wt.% nickel. The base structure is produced using a mask. A phosphorus-nickel layer is provided between the base structure and the precious metal coating.

DE 10200222.3 FUEL CELL WITH AN INTERNAL CHAMBER, IN WHICH A GAS STORAGE DEVICE IS PLACED

Abstract - The fuel cell (1) has an inner space (11) defined by a tubular body (2) containing a gas reservoir (12), the tubular body having a layer structure (3) with a central proton exchange membrane (5) sandwiched between diffuser layers. The gas reservoir supplies the inner diffuser layer with a reaction gas, one end of the tubular body closed by an elastically-deformable membrane (16), provided with an operating element for the discharge valve for the pressure reservoir, e.g. a metal hydride reservoir for hydrogen.

DE 10201145.1 FUEL CELL OR HYDROLYSER AND METHOD FOR PRODUCING A FUEL CELL OR A HYDROLYSER

Abstract - The invention is the same as in EP 03000353.7.

DE 10201148.6 METHOD AND APPARATUS FOR APPLYING A PRESSURE FORCE TO SHEET ELECTRODES OF A FUEL CELL OR OF A HYDROLYSER

Abstract - The invention is the same as in EP 03000352.9.

DE 10200404.8 AIR-HEATING DEVICE WITH FUEL CELL

Abstract - The invention is the same as in EP 03000250.5.
DE 19526609.9  TUBULAR ASSEMBLY OF ELECTRODES AND MEMBRANE FORMING FUEL CELL

Abstract - Two electrodes (2,4) and an intermediate ion exchange membrane (3) form a fuel cell of tubular form. The H2 electrode (2) is the innermost electrode and is surrounded by the membrane and then the O2 electrode. The H2 electrode forms a central H2 inlet (1) and a gas-permeable protective sheath (5) can be provided on the outside of the assembly. O2 e.g. from the air passes to the O2 electrode through the sheath.

EP 00107637.1; HYDROLYZER

Abstract - The invention is the same as in DE 19916240.9.

EP 01125682.3 PRESSURE DIFFERENCE SAFETY VALVE

Abstract - The invention is the same as in DE 10053609.3.

EP 02029001.1 FUEL CELL WITH AN INTERNAL CHAMBER, IN WHICH A GAS STORAGE DEVICE IS PLACED

Abstract - The invention is the same as in DE 10200222.3.

EP 03000354.5 ELONGATED FUEL CELL HAVING CROSS CHANNELS FOR GAS SUPPLY

Abstract - The device has transverse channels (6) for gas supply on at least one side of a polymer electrolyte membrane or PEM (2). The channels are formed behind a diffusion layer covering the PEM near an electrode surface supporting the diffusion layer and run transversely to the fuel cell's longitudinal edges (10). Several of the transverse channels have a cross-section decreasing from one longitudinal edge of the fuel cell to the other.
EP 03000353.7  FUEL CELL OR HYDROLYSER AND METHOD FOR PRODUCING A FUEL CELL OR A HYDROLYSER

Abstract - The fuel cell or hydrolyzer has a central proton exchange membrane (2), diffuser layers (3) covering the membrane and flat electrodes (4) contacting the diffuser layers at the rear, of which at least one is supported on a rear cover via a seal (5). The seal has a volume expanded and/or volume expandable component activated by a chemical and/or physical effect. An independent claim is also included for the following: a method of manufacturing an inventive device.

EP 03000352.9  METHOD AND APPARATUS FOR APPLYING A PRESSURE FORCE TO SHEET ELECTRODES OF A FUEL CELL OR OF A HYDROLYSER

Abstract - The fuel cell (1) or hydrolyzer has a layered structure (2) with a central proton exchange membrane (5), diffuser layers covering the membrane and flat electrodes supporting the rear of the diffuser layers. The layer structure is mounted on a core (3). The method involves increasing the diameter of the core by subjecting it to hydraulic or pneumatic pressure. An independent claim is also included for the following: a fuel cell or hydrolyzer.

EP 03000250.5  AIR-HEATING DEVICE WITH FUEL CELL

Abstract - The device has an air supply (11) and at least one air-breathing fuel cell (3) for oxidation of a fuel gas. The fuel cell has a proton exchange membrane for cold oxidation of the gas. The air supply runs past the fuel cell to supply the cell with oxygen and to simultaneously heat the air with the waste heat from the fuel cell.